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Abstract: Pancreatic ductal adenocarcinoma (PDA) is a lethal disease and is one of the cancers 

that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy 

has provided any significant increase in the survival of patients with PDA. Despite intensive 

efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even 

after the introduction of molecularly targeted agents, chosen on the basis of their involvement in 

pathways that are considered to be important in PDA development and progression. Recently, 

however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin) treatment has 

provided a limited survival advantage in patients with advanced PDA. Therefore, effective 

therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. 

Results from the last 10 years of research in the field of PDA have helped to identify new 

immunological targets and develop new vaccines that are capable of stimulating an immune 

response. In addition, the information obtained about the role of the tumor microenvironment in 

suppressing the immune response and the possibility of targeting PDA microenvironment to limit 

immune suppression and enhance the response of effector T-cells has opened new avenues for 

treating this incurable disease. The time is ripe for developing new therapeutic approaches that 

are able to effectively counteract the progression and spreading of PDA. This review discusses 

the potential prospects in the care of patients with pancreatic cancer through vaccination and 

its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, 

and inhibition of immunological checkpoints.
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Pancreatic cancer
Although lung, breast, prostate, and colorectal cancers are considered to be the “big 

four” cancer types in the USA, pancreas and liver cancers are expected to surpass 

breast, prostate, and colorectal cancers to become the second and third leading causes 

of cancer-related deaths by 2030, respectively.1 Pancreatic ductal adenocarcinomas 

(PDAs) arise from the exocrine pancreas and account for 95% of pancreatic cancers.2 

In the USA, there were an estimated 48,960 cases of new-onset pancreatic cancer in 

2015, which led to 40,560 deaths, with a 5-year survival rate of ∼7%.3 PDA is nearly 

universally lethal; ,20% of patients are suitable candidates for surgery at the time of 

diagnosis, and the median survival rate is 3.5 months and 12.6 months for nonresected 

patients and resected patients, respectively.2,4 PDA evolves from noninvasive precursor 

lesions that do not invade the basement membrane.5–7 Three precursors have been 

characterized, namely, pancreatic intraepithelial neoplasias (PanINs), intraductal 

papillary mucinous neoplasms, and mucinous cystic neoplasms.8
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The most frequent genetic abnormalities in PDA are 

mutational activation of the KRAS oncogene, inactivation of 

tumor suppressor genes, including CDKN2A, TP53, SMAD4, 

and BRCA2,9 widespread chromosomal losses, gene ampli-

fications,10 and telomere shortening.11

The early stages of pancreatic cancer are usually asymp-

tomatic, and therefore, most patients with PDA present an 

advanced-stage disease at diagnosis.12 Currently, no early 

detection tests are available, and as a result, most patients 

(80%–85%) are not diagnosed until the later stage of the 

disease.13–15 For the diagnosis of PDA, there are many poten-

tial serum biomarkers that allow stratifying patients according 

to the prognosis and for monitoring the therapy.16 CA 19-9 

is the only biomarker with clinical usefulness in predicting 

the patient’s response to chemotherapy,17,18 preoperative 

prognosis, as well as assessing treatment response, overall 

survival, and recurrence.19–23 However, CA 19-9 has several 

limitations; it is not a specific biomarker for PDA and may 

also be elevated in cholestasis. In addition, patients who are 

negative for Lewis antigen A or B (∼10% of patients with 

PDA) do not synthesize CA 19-9 and have undetectable 

levels, even in the advanced stages of the disease.24

A promising discovery of biomarkers for the early diag-

nosis of PDA came from a serological proteome approach, 

which identified autoantibodies as a potential diagnostic 

marker in patients with PDA, in a genetically engineered 

mouse (GEM) model of PDA and in a prediagnostic cohort. 

These autoantibodies recognize the cytoskeletal protein 

Ezrin25 and the phosphorylated α-enolase (ENO1), a gly-

colytic enzyme, which also functions as a plasminogen 

receptor.26 Combined detection of antibodies to Ezrin, phos-

phorylated ENO1, and CA 19-9 correctly discriminates PDA 

from control patients with high sensitivity and specificity.25 

A cell surface proteoglycan, glypican-1, specifically enriched 

on PDA cell-derived exosomes, was found to be able to 

discriminate early stages of pancreatic cancer.27 Validating 

these newly discovered markers in large cohorts of early 

and advanced patients with PDA, as well as in selected risk 

populations, and developing easy and convenient clinical tests 

for their detection will greatly facilitate curative surgical and 

immune-based therapies.

Conventional therapies
Currently, surgical resection offers the only hope of cura-

tive therapy for PDA. Nevertheless, this procedure is only 

considered in patients with resectable PDA, which represents 

∼20% of patients.28,29 Although additional palliative care is 

often utilized, controversy surrounds the potential benefits. 

Several poor predictors for successful resection have been 

identified, including lymph node involvement,30 high tumor 

grade,31 large tumor size,32 elevated CA 19-9 levels,32 and 

positive margins of tumors following resection.33 These same 

factors are also indicative of recurrence of pancreatic tumors. 

Even with complete and successful surgical resection, 5-year 

survival rates remain dismal, at ∼20% following surgery.34 

Therefore, postoperative chemotherapy involving gemcit-

abine or 5-fluorouracil or chemoradiation is almost always 

incorporated into the therapeutic regimen. Developing 

other complementary agents to enhance chemotherapeutic 

effects such as Hedgehog signaling inhibitors,35 second 

mitochondria-derived activator of caspase mimetics,36 

microRNAs,37 resveratrol,38 capecitabine,39 thymoquinone,40 

heat-shock protein complements,41 or curcumin42 are 

currently under review.13 Certain patients might receive 

neoadjuvant (preoperative) gemcitabine-based therapy that 

increased survival rates.43,44 Chemotherapy with radiation has 

also been shown to improve survival, but not stage, of locally 

invasive tumor patients without metastasis.45

Due to the difficulties of making an early diagnosis, most 

patients present metastatic PDA upon initial diagnosis. In the 

advanced stage of disease, PDA causes imminent mortality. 

Gemcitabine was once considered as the chemotherapeutic 

standard of care for advanced PDA, which improved median 

overall survival as well as 1-year survival (18%).46 At present, 

FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and 

oxaliplatin) is considered as the new standard in the treat-

ment of advanced PDA.47 Compared to gemcitabine alone, 

FOLFIRINOX has been shown to result in a better objective 

response rate (32% vs 9%), improved median progression-

free survival (6.4  months vs 3.3  months), and increased 

overall survival (11.1  months vs 6.8  months). While the 

toxicity levels associated with FOLFIRINOX are greater 

than those caused by gemcitabine, the effects did not have 

a significant impact on the quality of life, and very few 

deaths correlated with toxicity have been reported. However, 

gemcitabine-based therapies in patients who do not tolerate 

FOLFIRINOX as a first-line therapy have been demonstrated 

to be beneficial.47

In the recent years, targeted therapies have been tested 

in metastatic pancreatic cancer patients: Erlotinib, an inhibi-

tor of the epidermal growth factor receptor (EGFR) which, 

in combination with gemcitabine, significantly decreased 

tumor progression and increased overall survival rates.48 

This was especially true in patients with EGFR mutations 

compared to wild-type EGFR (ClinicalTrials.gov number, 

NCT01608841).49
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In addition, nab-paclitaxel (microparticles of albumin-

containing paclitaxel that diminishes the stromal tissue 

associated with PDA)50,51 in combination with gemcitabine 

improved the overall and progression-free survival, as well 

as the response rate in patients with metastatic PDA.52

Mechanisms and major players 
of suppression of the immune 
response in PDA
Tumors engage the immune system response from their 

inception and this initially involves mainly macrophages 

and mast cells. However, even early on, the engagement of 

T-cells is evident.53 Immune cells (principally innate cells) 

are able to recognize tumor cells as “different” and fight them 

by inducing an inflammatory response. However, inflamma-

tion creates a tumor mutagenic environment, either directly 

through free radical generation or indirectly via alterations in 

the microbiome and barrier functions, which enable access 

of genotoxic bacteria to the epithelial cells.54

Inflammation can promote the formation of premalignant 

lesions and accelerate the PDA development. Indeed, PDA 

is characterized by an immunosuppressive environment, 

which favors tumor progression and invasion. Pancreatitis, or 

inflammation of the pancreas, often leads to pancreatic dam-

age and promotes the development of neoplastic disease.

In a GEM model that spontaneously develops PDA 

comparable to the human disease, 50% of the tumor was 

composed of leukocytes, particularly immunosuppressive 

cells, including tumor-associated macrophages (TAM), 

myeloid-derived suppressor cells (MDSCs), and regulatory 

T-cells (Tregs), as well as a small percentage of effector 

T-cells. At early stages of carcinogenesis, for example, 

during PanIN development, Tregs and MDSC dominate the 

tumor infiltrate. Upon disease progression to PDA, CD4+ and 

CD8+ T-cells are inconsistently found to be associated with 

the tumor, and these CD8+ T-cells associated with the tumor 

appear to be inactivated, suggesting a suppressed immune 

environment.55 In all stages of the disease, there is a strong 

inverse correlation between MDSC and CD8+ T-cells, sug-

gesting that MDSCs are the mediators of the immunosup-

pression.55 Other preclinical models have demonstrated the 

role of chronic inflammation in PDA progression56 and of 

infiltrating neutrophils in mutant Kras-driven tumorigenesis 

and evasion from the immune system by promoting early 

angiogenesis.57,58

Many studies have reported that targeting specific tumor 

microenvironment components (Table 1), especially in con-

junction with chemotherapy, unleashes the T-cell response 

against PDA. Altering the tumor stroma with an anti-CD40 

agonist, which activated macrophages, showed therapeutical 

efficacy both in human and mouse PDA. The therapeutic 

effect of anti-CD40-dependent macrophage activation does 

not require CD4+ and CD8+ T-cells.59 However, when the anti-

CD40 agonist and gemcitabine treatment are combined with 

clodronate-encapsulated liposomes that deplete macrophages, 

a T-cell-dependent regression of the subcutaneous tumor is 

elicited in GEM.60 Ly6ClowF4/80+ macrophages appear to be 

responsible for this effect, and they reside outside the tumor 

microenvironment but are able to inhibit the infiltration of 

CD4+ and CD8+ T-cells into the tumor site, creating a site 

of acquired T-cell “immune privilege” in PDA. These data 

demonstrate that a T-cell response capable of inducing tumor 

regression can be invoked against spontaneously arising PDA 

and indicate a strategy that targets macrophages for enhanc-

ing the efficacy of T-cell-based immunotherapy in PDA. In 

a similar manner, the depletion of TAM by inhibitors of the 

Table 1 Strategies to modulate tumor microenvironment

Target Models Strategies References

CD40 Preclinical and clinical (both PDA) Agonist monoclonal Ab to CD40 in  
combination with gemcitabine

59,110

CSF-1R Preclinical (glioma) and clinical (breast ca) Monoclonal Ab to CSF-1R (BLZ945) 65
CCR2 Preclinical (breast) Monoclonal Ab to CCL2 62,63
GM-CSF Preclinical (transplantable PDA) Short hairpin RNA for GM-CSF  

or monoclonal Ab to GM-CSF
66,68

Monocytes Preclinical (fibrosarcoma, ovarian,  
Lewis lung ca)

Trabectedin 111

Ly6G Preclinical (PDA) Monoclonal Ab to Ly6G (1A8) 67
CXCL12 Preclinical (PDA) Monoclonal Ab to CXCL4 (AMD3100) 70
Smoothened Preclinical and clinical (PDA) IPI-926, semisynthetic derivative  

of cyclopamine, and genetic ablation
71,73

α-SMA Preclinical (PDA) Genetical ablation of α-SMA+ cells 72

Abbreviations: PDA, pancreatic ductal adenocarcinoma; RNA, ribonucleic acid; GM-CSF, granulocyte and monocyte-colony stimulating factor; Ab, antibody; ca, cancer; 
α-SMA, alpha-smooth muscle actin.
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chemokine receptor CCR2 or the colony stimulating factor 

1 receptor, in conjunction with gemcitabine, enhanced the 

infiltration of CD4+ and CD8+ T-cells, reduced the number of 

Treg cells, and inhibited the growth and spreading of GEM-

derived PDA cells orthotopically injected into syngeneic 

mice.61–63 Notably, the blockade of colony stimulating factor 1 

(CSF1) or CSF1 receptor (CSF1R) significantly enhanced the 

responses to immune checkpoint-based immunotherapy.64,65 

Similar results were obtained by the depletion of myeloid 

cells, which were actively recruited and maintained by two 

cytokines, namely, granulocyte-colony stimulating factor 

and granulocyte and monocyte–colony stimulating factor 

(GM-CSF), principally secreted by PDA cells harboring Kras 

mutations.66–68 Therefore, targeting the TAM or macrophages 

that are responsible for inhibiting the T-cell immune response 

is a feasible option effective, especially in combination with 

chemotherapy, for treating PDA. A well-known feature of 

PDA is the rapid development of desmoplasia, which is 

derived from pancreatic stellate cells that are activated to pro-

liferate and produce collagens, laminin, and fibronectin, that 

differentially shape the stroma.69 The stroma also contributes 

to tumor hypoperfusion and hypoxia and harbors suppressive 

infiltrative macrophages and inflammatory cells. Therefore, 

limiting either the inflammatory response or the stroma deple-

tion could enhance drug delivery to the cancer cells within 

the tumor mass while disrupting deleterious stroma–cancer 

cell interactions. A lot of data seem to support this hypoth-

esis, for example, ablation of cancer-associated fibroblasts or 

inhibition of cancer-associated fibroblasts-secreted CXCL12 

chemokines led to a T-cell infiltration of the tumor site and 

synergized with other immunotherapeutic strategies to greatly 

diminish cancer cells.70,71 New insights have been revealed 

from two studies that have demonstrated that 1) the stroma 

in PDA is protective, and this action is already exerted at the 

PanIN stage and72 2) targeting the stroma not only can lead 

to a more aggressive and proliferating form of PDA cells, 

but also can “prime” the tumor to more efficiently respond to 

immune checkpoint blockade and to antiangiogenic therapy;73 

therefore, it is important to reassess various therapeutic 

approaches bearing in mind that the actions of the stroma in 

PDA may be context dependent.74

All these data have corroborated the original idea that 

PDA is poorly immunogenic or an “immune privileged” site. 

However, the presence of T-cells in PDA and their ability 

to be activated by tumor antigens have been documented. 

Higher levels of tumor-infiltrating CD4+ and CD8+ cells and 

dendritic cells (DCs) positively correlate with longer survival 

after surgical resection.75 Indeed, clinically, CD8+-cells 

are elevated in the circulation of patients with PDA,76 and 

leukocytes, the majority of which are T-cells, surround the 

pancreatic lesion.77 T-cells are more frequently found in the 

fibrotic interstitial tissue than in the epithelial area of PDA.78 

Notably, PDA-infiltrating lymphocytes specifically recognize 

PDA-associated antigens but are often frustrated in their 

effector functions by the presence of Tregs.79

Vaccination in PDA
The prospect of effective immunotherapies for patients with 

PDA is now becoming a clinical reality, and the identification 

of tumor-associated antigens has been crucial in creating a 

springboard to accelerate this reality. The US FDA approval 

of PROVENGE (Sipuleucel-T), an autologous cellular 

vaccine, in 2010, as well as the anticytotoxic T-lymphocyte-

associated antigen 4 (CTLA-4) monoclonal antibody (mAB) 

ipilimumab in 2011, represents the success and great potential 

of immunotherapy in treating cancers.

The idea of training the immune system in vivo to 

recognize and kill cancer cells is the basis of the hypothesis 

for using vaccines in patients with cancer. In addition, any 

lessons from antiviral immune responses and vaccinations 

against infectious disease have been useful to develop 

antitumor vaccines. Types of immunotherapy that are cur-

rently being tested in clinical trials for PDA include whole 

cell, peptide/DNA, antigen pulsed-DC vaccines, and mAb 

treatments.

Whole-cancer cell vaccines
Cancer vaccines are preparations aimed at boosting the 

patient’s immune system against the administered antigen, 

which is usually specific for a particular tumor type, in order 

to protect the patient. There are several ways to deliver 

vaccines: whole-cell recombinant vaccines, DC vaccines 

that combine antigens with DC to present to leukocytes, 

DNA vaccines that act by inserting viral or bacterial DNA 

into animal or human cells, or peptide vaccines to modulate 

T-cell immunity.

Whole-cell vaccines typically use irradiated PDA cells 

as immunogens. These cells have the potential to elicit a 

robust immune response because they express the full rep-

ertoire of tumor-associated antigens. Algenpantucel-L is 

one of the most clinically advanced and promising immuno-

therapies; it is an irradiated, live combination of two human 

allogeneic PDA cell lines that express the murine enzyme 

α-1,3-galactosyl transferase, which directs the synthesis 

of α-galactosyl epitopes, usually absent in humans and, 

therefore, has the potential to be strongly recognized by 
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the immune system. Algenpantucel-L causes a hyperacute 

rejection of such allografts in humans, which is thought to 

trigger an immune response against cancer cells.80 A multi-

center Phase II trial (NLG0205) (ClinicalTrials.gov identifier: 

NCT00569387) of algenpantucel-L combined with adjuvant 

chemotherapy using gemcitabine and 5-fluorouracil/radiation 

after resection showed the induction of eosinophilia for up to 

2 years; 62% of patients were disease free after 1 year, with 

a 1 year overall survival rate of 86% (vs 69% of patients 

who received the same chemoradiation regimen without 

the vaccine).81 Another whole-cell vaccine is GVAX, which 

consists of irradiated tumor cells expressing the murine GM-

CSF. This caused a potent, long-lasting antitumor response 

requiring both CD4+ and CD8+ T-cells in the melanoma 

system.82 Phase I83 and single-institution Phase II84 clinical 

trials have also shown promising results for patients with 

PDA, even if only surgically treated patients were enrolled. 

Further stage II/III investigations are needed in patients with 

advanced or metastatic disease, and current clinical trials will 

provide important information (ClinicalTrials.gov identifier: 

NCT01088789, NCT01417000, NCT00727441).

Peptide vaccines and adoptive  
transfer therapy
The first peptide vaccine applied to PDA in a clinical trial 

was the synthetic Ras-peptide vaccine, which was proven 

to be safe.85 Combination with GM-CSF induced a spe-

cific immune response in 25 out of 43 patients and those 

with advanced cancer and immune response to the vaccine 

showed prolonged survival compared to nonresponders.86 

Other peptide vaccines investigated in clinical trials with 

PDA patients include the telomerase peptide vaccine 

(GV1001), the carcinoembryonic antigen (CEA), alone or 

in combination with mucin-1 (MUC-1), and survivin, in a 

case report of a 77-year-old patient with metastatic PDA 

refractory to gemcitabine.87 A study was conducted to 

investigate the safety and immunogenicity in patients with 

nonresectable pancreatic carcinoma using GV1001 for vac-

cination in combination with GM-CSF and gemcitabine as 

a first-line treatment. Mild adverse events were observed, 

and a GV1001-specific immune response, albeit transient, 

was reported in 75% of patients who contextually received 

GV1001, GM-CSF, and gemcitabine.88 The multicenter 

Phase III trial of the GV1001 vaccine in advanced and meta-

static PDA recruited 1,062 patients in 52 centers throughout 

the UK. There was no significant difference in the overall 

survival between the groups that received the vaccine and 

the control group receiving chemotherapy, but two biomark-

ers that defined responders to the vaccine were identified.89 

A viral-based vaccine was used to target the CEA antigen 

in combination with a poxvirus-based vaccine containing 

three T-cell costimulatory molecules such as B7-1 (CD80), 

intracellular adhesion molecule 1, and leukocyte function 

associated antigen-3. Phase I trials have demonstrated that 

CEA-T-cell costimulatory molecules vaccine is safe, is able 

to generate a significant anti-CEA immune response, and 

has some clinical benefit in patients with advanced cancer.90 

The addition of MUC-1 and of a boost with a different 

viral-expressing vaccine (PANVAC-V and vaccinia virus 

to immunize and PANCAV-F and fowl-pox virus to boost) 

in combination with GM-CSF showed an induction of anti-

bodies in some patients, with a consequent clinical benefit. 

However, a Phase III trial failed to improve the overall 

survival compared to the canonical chemotherapy.91 CEA and 

MUC-1 antigens were also used to pulse DC purified from 

patients and reinfused after in vitro expansion and loading. 

Both these DC-based vaccines were demonstrated to be safe, 

well tolerated, and elicited remarkable T-cell responses.92,93 

To our knowledge, no major trials have been carried out 

or are ongoing; thus, both strategies would require further 

investigations to translate into clinical efficacy. MUC-1 RNA 

was also used to transfect autologously purified DC, which 

were intradermally injected into unresectable or recurrent 

patients with PDA, who also received gemcitabine and 

in vitro expanded cytotoxic T-cells in the presence of a PDA 

cell line plus IL-2. The median survival rate was 13.9 months 

and the 1 year survival rate was 51.1%, with a disease control 

ratio of 61.9%. Liver metastasis occurred in just five patients 

of the 35 patients investigated with no liver metastasis before 

treatment, and there were no severe toxicities associated with 

the adoptive immunotherapy.94

Adoptive T-cell therapy, which aims at in vitro expan-

sion and “education” of T-cells from patients with cancer, 

for subsequent reinfusion to fight cancer cells in vivo, has 

not been widely explored in PDA. One Phase I clinical trial 

(ClinicalTrials.gov identifier: NCT02465983) is recruit-

ing patients and involves the transfection of patient T-cells 

with a specific receptor recognizing a mesothelin peptide 

(CART-meso) and the protein CD19 (CART-19) expressed by 

B-cells. The latter T-cells should kill patient B-lymphocytes 

by preventing the production of antibodies against CART-

meso cells. Mesothelin is an antigen that has been initially 

characterized in ovarian cancer and PDA95 and has been 

observed to induce the CD8+ T-cell response in patients 

treated with GVAX and cyclophosphamide, either with or 

without live attenuated-Listeria monocytogene-expressing 
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mesothelin.96 In this study, the prime/boost strategy with 

GVAX and L. monocytogene-expressing mesothelin 

extended survival of patients with pancreatic cancer and 

enhanced mesothelin-specific CD8+ T-cell responses and 

was associated with a longer overall survival, regardless of 

the treated arm.97

Wilms tumor (WT-1) peptide-based vaccine in combi-

nation with gemcitabine is another strategy that was shown 

to be well tolerated in unresectable patients with advanced 

PDA. The Phase I clinical trial demonstrated its safety and 

revealed a statistically significant correlation between longer 

survival and positive delayed-type hypersensitivity to WT-1. 

Moreover, longer survivors displayed a higher frequency of 

memory WT-1-specific cytotoxic T-cells both before and 

after treatment.98

Cancer testis (CT) antigens were the first tumor-associated 

antigens proposed for antitumor vaccination strategies 

because of their specific expression in tumors but not normal 

cells of different histological origin. Several preclinical and 

clinical studies demonstrated CT-based immunotherapies as 

being effective in inducing a specific immune response and 

occasionally clinical responses in different types of tumors.99 

A peptide vaccine consisting of four distinct nonamers 

from CT and vascular endothelial growth factor receptor 1 

(VEGF-R1) and 2 (VEGF-R2) proteins has been shown to 

be well tolerated and able to elicit a peptide-specific T-cell 

response in all the nine patients with advanced PDA refrac-

tory to standard chemotherapy enrolled in a Phase I clinical 

trial. Notably, clinical benefits were observed in four out of 

nine patients, with a disease-free period of 90 days and an 

overall survival of 207 days.100

Passive immunotherapy combined  
with antitumor vaccines
Several preclinical studies are in the process of investigating 

the potential of Treg suppression and immune checkpoint 

blockade by mAbs alone or in combination with chemo-

therapy to boost the patient’s immune system in recogniz-

ing and destroying tumors. Administering ipilimumab in 

combination with the GVAX vaccine (ClinicalTrials.gov 

identifier: NCT00836407) and the administration of niv-

olumab in combination with the GVAX vaccine and cyclo-

phosphamide (ClinicalTrials.gov identifier: NCT02451982) 

are two representative clinical trials. Ipilimumab and 

nivolumab are mAb against CTLA-4 and programmed cell 

death-1 (PD-1), respectively. Both molecules are protein 

receptors expressed on the surface of activated T-cells and 

are known as checkpoints due to their inhibitory function. 

After binding of CTLA-4 with the costimulatory molecule 

CD80 and of PD-1 with the ligand PD-L1, an inhibitory 

signal to T-lymphocytes is transmitted. The success obtained 

in autoimmune disease with the anti-CTLA-4 antibody treat-

ment has prompted scientists to also employ this antibody in 

patients with cancer. The notion of blocking the inhibitory 

signal in order to sustain the antitumor T-cell response for 

longer was straight forward and insightful, and it has been 

demonstrated to be effective in potentiating the antitumor 

response and in unrestrained T-cell proliferation in different 

types of cancer. In a first small study (30 patients with PDA 

previously treated), the combination of ipilimumab with the 

GVAX vaccine showed a potential clinical benefit, which 

needs to be confirmed in a larger cohort. Among the patients 

with increased overall survival, there was an increase in the 

peak of mesothelin-specific T-lymphocytes and an enhance-

ment of the T-cell repertoire.101 Although not without side 

effects, the blockade of checkpoint molecules displays a 

great therapeutical potential.

In conclusion, researchers have long considered PDA 

as being nonamenable to immunotherapy, owing to an 

immunosuppressive tumor microenvironment. However, 

preclinical and clinical studies have shown the reestablishing 

of tumor immunosurveillance by activating T-cells and 

macrophages, and several clinical trials are following this 

direction (Table 2).

Novel DNA vaccine promising  
strategy for PDA therapy
Among vaccines, DNA vaccines display several advantages 

such as they are stable, do not contain viral proteins that 

could downregulate the immune system or elicit neutraliz-

ing antibodies, and are safe, as several studies have shown 

that mutations arising from a putative integration event are 

extremely rare.102 In turn, DNA vaccination usually fails to 

mount a strong immune response and requires additional 

adjuvant strategies.

For several years, our group has focused on the identifi-

cation of novel PDA-associated targets to use for developing 

immunotherapeutic strategies to be applied in treating this 

dismal disease. Through a serological approach, we have 

identified 12 PDA-associated proteins,103 which we have 

investigated for their ability to activate a T-cell immune 

response both in vitro and in vivo. Among these, ENO1 

has been shown to be a promising candidate target as it 

was recognized by the autoantibodies present in .60% of 

patients with PDA.26,104 ENO1 is coded by the ENO1 gene 

and is overexpressed in the cytoplasm of PDA cells being 
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Table 2 Clinical trials consisting in vaccine strategiesa

Number Status Intervention Phase

NCT00836407 Completed Allogeneic PDA cells transfected with GM-CSF + ipilimumab I
NCT01088789 Recruiting Allogeneic PDA cells transfected with GM-CSF given long term ± 

cyclophosphamide
II

NCT01896869 Recruiting Allogeneic PDA cells transfected with GM-CSF + ipilimumab  
in patients receiving FOLFIRINOX

II

NCT00727441 Active, not recruiting GVAX + cyclophosphamide NS
NCT00389610 Active, not recruiting GVAX after surgery II
NCT00569387 
NCT00614601

Both completed Algenpantucel-L after surgery II

NCT00305760 Completed GVAX + cituximab/cyclophosphamide II
NCT02451982 Not yet recruiting GVAX + cyclophosphamide ± nivolumab I/II
NCT00084383 Completed GVAX + chemotherapy after surgery II
NCT01595321 Active, not recruiting Allogeneic PDA cells transfected with GM-CSF +  

cyclophosphamide + stereotactic body radiation + FOLFIRINOX
I

NCT00683085 Terminated HLA-A02 restricted peptide from VEGF-R + gemcitabine I/II
NCT00425360 Completed GM-CSF + peptide from telomerase + capecitabine or gemcitabine III
NCT00837135 Withdrawn GI-4000 (ras peptide containing different mutated sites) ±  

T-cell adoptive transfer
I

NCT00655785 Completed Peptides derived from VEGF-R1 and R2 + gemcitabine I/II
NCT00868114 Active, not recruiting KLH-pulsed autologous dendritic cell vaccine in combination  

with TNFerade or radiation
II

NCT02465983 Recruiting CART antimesothelin + CART anti-CD19 I

Note: aFor complete review see ClinicalTrials.gov.
Abbreviations: PDA, pancreatic ductal adenocarcinoma; GM-CSF, granulocyte and monocyte-colony stimulating factor; FOLFIRINOX, 5-fluorouracil, leucovorin, irinotecan, 
and oxaliplatin; NS, not specified; VEGF-R, vascular endothelial growth factor-receptor; KLH, keyhole limphet hemocyanin.

membrane expressed.104,105 In the cytoplasm, ENO1 acts as 

a glycolytic enzyme, whereas membrane-expressed ENO1 

behaves as a plasminogen receptor and plays an important 

role in the cell migration.106 The ENO1 antibody effectively 

inhibits the spreading and invasion of PDA in vivo and 

in vitro.105 Patients with PDA with autoantibodies to ENO1 

also present an ENO1-specific T-cell response, which is 

not observed in patients with no ENO1 autoantibodies.104 

Upon transfer into immunocompromised mice, ENO1-

specific T-cells inhibit the growth of xeno-transplanted 

human pancreatic tumors. Despite the ubiquitous presence 

of ENO1 in all mammalian cells, normal cells expressing 

low levels of ENO1 are spared by ENO1-specific cytotoxic 

T-lymphocytes.104 Anti-ENO1-specific T-cells were found to 

infiltrate tumor tissue in patient with resected PDA.79 These 

results led us to develop a DNA-based vaccine to assess the 

ability of an ENO1-specific antitumor response to inhibit 

the tumor growth. To do this, we exploited two of the most 

sophisticated murine models that spontaneously develop 

autochthonous PDA (known as KC and KPC mice). GEM 

that develops spontaneous PDA was vaccinated with a plas-

mid encoding human ENO1, which displays .95% identity 

(99% homology) with the mouse ortholog. The ENO1 DNA 

vaccine significantly induced a specific immune response 

that prolonged the survival of both PDA mouse models: 

from 336 days to 474 days of age for KC mice, the lon-

gest overall survival ever reported, and from 203 days to 

245 days for KPC mice. The ENO1 DNA vaccine elicited 

several protective immunological mechanisms, namely, 

high levels of anti-ENO1 IgG, activation of specific Th1 

and Th17 cells, and a large recruitment of CD3 cells into 

the tumor area. Notably, anti-ENO1 IgG was able to bind 

to the cell surface of murine PDA cells and induce their 

killing by complement-dependent cytotoxicity. Th1/Th17 

cytokines favor the switching to effector subclasses of anti-

ENO1 antibodies. An additional effect of the ENO1 DNA 

vaccine is the decrease in cells with suppressive activity, 

typically found in the tumor microenvironment, namely, 

MDSC and Tregs. Of clinical relevance, the therapeutic 

efficacy of the ENO1 DNA vaccine was observed to be 

very promising when the administration protocol started at 

8 months to 9 months of age.107 In these mice, the ENO1 

DNA vaccine also induced the formation of intratumoral 

tertiary lymphoid tissue (TLT) with active germinal centers 

and correlated with increased recruitment of T-cells.108 

Analysis of human PDA tissues by immunohistochemistry 

revealed two distinct patterns of B-cell distribution, either 

as randomly infiltrating cells (CD20-tumor-infiltrating 
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lymphocytes) or strategically located within organized TLT 

(CD20-TLT). Notably, high density of CD20-TLT correlated 

with CD8+ T-cell infiltration and a more favorable prognostic 

value.108 Overall, data on ENO1 vaccination indicate that it 

is a promising candidate target to design adjuvant therapies 

to prevent recurrences in resected patients or to prolong the 

survival of untreatable patients.

Conclusion
Despite several successes in curing solid tumors, PDA 

remains the only tumor to have had the same mortality rate 

for the last 15 years. To date, the only curative treatment is 

represented by surgical resection, only applicable, however, 

to a small percentage of patients. Recent advances have 

been raised with the use of gemcitabine in a neoadjuvant 

setting to increase the resectable percentage of patients with 

PDA (Figure 1). The time is ripe to transfer the information 

obtained to elicit an active immune response against PDA to 

clinical trials that effectively prolong the survival of patients 

with PDA. The right drug combination could transform 

encouraging vaccine preclinical and clinical results into 

an effective protocol able to cure PDA (Figure 1). A lot of 

evidence has shown that several anticancer agents, including 

classic chemotherapeutics and targeted compounds, stimu-

late tumor-specific immune responses either by inducing 

immunogenic cell death or by engaging immune effector 

mechanisms.109 Their combination with vaccination against 

selected immunological targets (eg, ENO1 and mesothelin) 

and with different strategies (whole cells, DC, peptides, 

or DNA) will allow the design of novel therapies to elicit 

effective immune responses in resected patients to prevent 

recurrences or to prolong survival of unresectable patients 

(Figure 1). In addition, the novel strategies for modulat-

ing the tumor microenvironment and immunosuppressive 

mechanisms through mAb may be combined to further 

enhance the antitumor response induced by vaccination 

following surgery, chemo- or radiotherapy (Figure 1). The 

greatest challenge in future studies will be to establish the 

most effective timeline and the best combinations of dif-

ferent treatments.
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Figure 1 Conventional and future therapies for PDA.
Notes: At present, conventional therapies include surgery for resectable patients and chemo- and/or radiotherapy for locally advance and metastatic PDA. Preclinical and 
clinical data demonstrate that immunotherapy can be efficiently combined with conventional therapies to improve the survival of patient with PDA. Immunotherapies include 
whole cell, loaded-DC, peptide, or DNA vaccines in combination with antibodies to modulate stroma and immune responses. All these can be combined with chemo- and/or 
radiotherapy in neoadjuvant settings to shrink tumors to render them resectable, or after surgical resection to avoid recurrence.
Abbreviations: PDA, pancreatic ductal adenocarcinoma; DC, dendritic cell.
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